321
IBRACON Structures and Materials Journal • 2013 • vol. 6 • nº 2
D. L. ARAÚJO | A. R. DANIN
|
M. B. MELO
|
P. F. RODRIGUES
connection between bar and concrete can be guaranteed at the
interface region between both materials.
n
The tensile stress distributions in the bar, obtained from the
computer modeling, showed that the bonding stress at the mo-
ment of bonding failure is in fact constant along the bonding
length. Furthermore, they indicated that the anchorage length
equal to 10
φ
was in fact higher than the basic anchorage length
for the concrete used in this research.
5. Acknowledgements
The authors wish to thank the company Furnas Centrais Elétricas
S.A. for the financing of this research and for making available its
laboratories for executing the tests. They also wish to thank the
companies Mc-Bauchemie and Arcelor Mittal for the donation of
material used in the research.
6. References
[01] FUSCO, P.B. Técnicas de armar as estruturas de
concreto. 1
a
Ed. São Paulo: PINI, 1995.
[02] HARAJLI, M. H. Numerical bond analysis using
experimental derived local bond laws: a powerful
method for evaluating the bond strength of steel bars.
Journal of Structural Engineering, v.133, n.5,
p.695-705, 2007.
[03] RILEM-FIP-CEB. Bond test for reinforcing steel:
1-Beam test (7-II-28 D). 2-Pullout test (7-II-128):
Tentative recommendations. RILEM Journal Materials
and Structures, v.6, n.32, p.96-105, 1973.
[04] REHM, G. AND ELIGEHAUSEN, R. Bond of Ribbed
Bars under High Cycle Repeated Loads. ACI Journal,
v.76, n. 2, p.297-309, 1979.
[05] ROSTÁSY, F. S.; HARTWICH, K. Bond deformed
reinforcing bar embedded in steel fibre reinforced
concrete. The International Journal of Cement and
Lightweight Concrete, v.10, n.3, 1988.
[06] ALMEIDA FILHO, F. M.; EL DEBS, M. K.; EL DEBS,
A. L. H. C.. Bond-slip behavior of self-compacting c
oncrete and vibrated concrete using pull-out and beam
tests. Materials and Structures, V. 41, n. 6,
p. 1073-1089, 2008.
[07] ALMEIDA FILHO, F. M.; EL DEBS, M. K.; EL DEBS,
A. L. H. C.. Evaluation of the bond strength behavior
between steel bars and High Strength Fiber
Reinforced Self-Compacting Concrete at early ages.
In: Tailor Made Concrete Structures. Walraven and
Stoelhorst (eds). 2008. Taylor & Francis Group,
London. p. 445-451.
[08] DANCYGIER, A. N.; KATZ, A.; WEXLER, U.. Bond
between deformed reinforcement and normal and
high-strength concrete with and without fibers. Materials
and Structures, v.43, n. 6, p. 839-856, 2010.
[09] DANCYGIER, A. N.; KATZ, A.. Bond over direct
support of deformed rebars in normal and high strength
concrete with and without fibers. Materials and
Structures, V. 45, n. 1-2 , p. 265-275, 2012.
[10] LORRAIN, M. ; BARBOSA, M. P. ; SILVA FILHO,
L.C.P. . Estimation of compressive strength based on
Pull-Out bond test results for on-site concrete quality
control. IBRACON Structures and Materials Journal,
v. 4, n. 4, p. 582-591, 2011.
[11] DE LARRARD, F.; SCHALLER, I.; FUCHS, J.. Effect
of the Bar Diameter on the Bond Strength of Passive
Reinforcement in High-Performance Concrete. ACI
Materials Journal, V. 90, n.4, p. 333-339, 1993.
[12] HAMZA, A. M.; NAAMAN, A. E.. Bond Characteristics
of Deformed Reinforcing Steel Bars Embedded in
SIFCON. ACI Materials Journal, V. 93, n. 6, p. 1-11, 1996.
[13] DESNERCK, P.; DE SCHUTTER, G.; TAERWE,
L.. Bond behaviour of reinforcing bars in self-compacting
concrete: experimental determination by using beam
tests. Materials and Structures, V. 43, Supplement 1,
p. 53-62, 2010.
[14] EZELDIN, A. S.; BALAGURU, P. N.. Bond behavior
of normal and high-strength fiber reinforced concrete.
ACI Materials Journal, V. 86, n. 5, p. 515-524, 1989.
[15] BENTUR, A.; MINDESS, S. Fibre reinforced cementitious
composites. Elsevier Applied Science, London, 1990.
[16] HARAJLI, M. H.; SHALLOUKH, K. A. Effects of fibers
on developments / splice strength of reinforcing bars in
tension. ACI Materials Journal, v.94, n.4, p.317-324,
1997.
[17] HARAJLI, M. H.; HAMAD, B.; KARAM, K. Bond-slip
response of reinforcing bars embedded in plain and
fiber concrete. Journal of Materials in Civil Engineering,
v.14, n.6, p.503-511, 2002.
[18] HARAJLI, M. H.; GHARZEDDINE, O. Effect of steel
fibers on bond performance of steel bars in NSC and
HSC under load reversals. Journal of Materials in Civil
Engineering, v.19, n.10, p.864-873, 2007.
[19] DANCYGIER, A. N.; KATZ, A. The Combined
Effect of Concrete Strength and Geometric parameters
on Concrete-Reinforcement Bond. In: 8th
INTERNATIONAL SYMPOSIUM ON UTILIZATION
OF HIGH-STRENGTH AND HIGH-PERFORMANCE
CONCRETE. S1-1-3, Tokyo, Japan, p.357-362, 2008.
[20] CEB – COMITÉ EURO-INTERNATIONAL DU BETÓN.
CEB-FIP MODEL CODE 1990. Design Code, Thomas
Telford, London, 1998.
[21] HARAJLI, M. H.; HOUT, M. A.; JALKH, W. Local bond
stress-slip behavior of reinforced bars embedded in
plain and fiber concrete. ACI Materials Journal, v.92,
n.4, p.343-353, 1995.
[22] ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR NM 67: Concreto – Determinação
da consistência pelo abatimento do tronco de cone,
Rio de Janeiro, 1998.
[23] ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR NM 47: Concreto – Determinação
do teor de ar em concreto fresco – Método pressométrico,
Rio de Janeiro, 2002.
[24] ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR 9833: Concreto fresco - Determinação
da Density, do rendimento e do teor de ar pelo método
gravimétrico, Rio de Janeiro, 2008.
[25] ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR 15823-2: Concreto auto-adensável