Page 45 - vol5_n4

Basic HTML Version

458
IBRACON Structures and Materials Journal • 2012 • vol. 5 • nº 4
Effect of red mud addition on the corrosion parameters of reinforced concrete evaluated by
electrochemical methods
5. Acknowledgements
The authors wish to thank the
FAPESB
- Bahia Research Founda-
tion
, PPGCEM/UFSCar
- The Postgraduate Program in Materials
Science and Engineering at the Federal University of São Car-
los (Brazil) and the
UA/DECV
- Ceramics and Glass Engineering
Dept., University of Aveiro & CICECO (Portugal) - Project FCT-
PTDC/CTM/65243/ 2006, for their support of this research.
*This project did not have the financial support of Alcoa Brazil.
6. References
[01] IBRAM – Brazilian Mining Association. Bauxita.
Disponível em:
<www.ibram.org.br/sites/1300/1382/00000033.pdf>.
Acesso em: 15 out. 2010.
[02] ROSKILL REPORTS. The Economics of Bauxite &
Alumina. Disponível em:
<www.roskill.co.uk/index.html>. Acesso em:
20 nov. 2010.
[03] SINGH, M.; UPADHAYAY, S.N.; PRASAD, P.M.
Preparation of special cements from red mud.
Waste Management, v. 16, n. 8, p. 665-670, 1996.
[04] AMRITPHALE, S.S. et al. A novel process for making
radiopaque materials using bauxite—Red mud.
Journal of the European Ceramic Society. v. 27, n. 4,
p. 1945-1951, 2007.
[05] AMRITPHALE, S.S.; PATEL, M. Utilisation of red mud,
fly ash for manufacturing bricks with pyrophyllite.
Silicates Ind, v. 2, n. 3, p. 31-35, 1987.
[06] VINCENZO, M.S.; RENZ, C.; STEFANO, M.;
GIOVANNI, C. Bauxite red mud in the ceramic
industry. Part 2: production of clay based ceramics.
Journal of the European Ceramic, v. 20, n. 3,
p. 245–252, 2000.
[07] YALCIN, N.; SEVNIC, V. Utilization of bauxite waste in
ceramic glazes. Ceramics International, v. 26, n. 5,
p. 485-493, 2000.
[08] ASOKAN, P.; SAXEAN, M.; ASOLEKAR, S.R. Coal
combustion residues-environmental implications and
recycling potentials. Resources, Conservation and
Recycling, v. 43, n. 3, p. 239-262, 2005.
[09] TSAKIRIDIS, P.E.; AGATZINI-LEONARDOU,
S.; OUSTADAKIS, P. Red mud addition in the raw
meal for the production of Portland cement clinker.
Journal of Hazardous Material, v. 116, n. 1-2,
p. 103-110, 2004.
[10] SINGH, M.; UPADHAYAY, S.N.; PRASAD, P.M.
Preparation of iron rich cement from red mud. Cement
and Concrete Research, v. 27, n. 7, p. 1037-1046,
1997.
[11] CABEZA, et al. Red mud as a corrosion inhibitor for
reinforced concrete. The Journal of Corrosion Science
and Engineering, v. 6, n. 32, p. 1-4, 2003.
[12] GORDON, J.N.; PINNOCK, W.R.; MOORE, M.M. A
preliminary investigation of strength development in
Jamaican red mud Composites. Cement and Concrete
Composites, v. 18, n. 6, p. 371-379, 1996.
[13] SANTOS, L. Avaliação da resistividade elétrica do
concreto como parâmetro para a previsão da iniciação
da corrosão induzida por cloretos em estruturas de
concreto. 161p. Dissertação (Mestrado em estruturas),
Departamento de Estruturas, Universidade de Brasília,
Brasília, 2006.
[14] BAUER, E. Avaliação comparativa da influência da
adição de escória de alto-forno na corrosão das
armaduras através de técnicas eletroquímicas. 1995.
236p. Tese (Doutorado), Escola Politécnica,
Universidade de São Paulo, São Paulo, 1995
[15] MIRANDA, J.M; et al. Limitations and advantages of
electrochemical chloride removal in corroded
reinforced concrete structures. Cement and Concrete
Research, v. 37, n. 4, p. 596–603, 2007.
[16] SHI, C. Effect of mixing proportions of concrete on
its electrical conductivity and the rapid chloride
permeability test (ASTM C1202 or ASSHTO T277)
results. Cement and Concrete Research, v. 34, n. 3,
p. 537–545, 2004.
[17] POLDER, R.B. Test methods for on site measurement
of resistivity of concrete - a RILEM TC-154 technical
recommendation. Construction and Building Materials,
v. 15, n. 2-3, p. 125-131, 2001.
[18] WHITING, D.A.; NAGI, M.A. Electrical Resistivity of
Concrete − A Literature Review. Illinois, USA: Portland
Cement Association, 2003. 57p. (R&D Serial
No. 2457)
[19] BASHEER, P.A.M.; et al. Monitoring electrical
resistance of concretes containing alternative
cementitious materials to assess their resistance to
chloride penetration. Cement & Concrete Composites,
v. 24, n. 5, p. 437-449, 2002.
[20] MCCARTER, W.J.; STARRS, G.; CHRISP, T.M.
Electrical conductivity, diffusion, and permeability of
Portland cement-based mortars. Cement and
Concrete Research, v. 30, n. 9, p. 1395-1400, 2000.
[21] ANDRADE, C. Calculation of diffusion coefficients in
concrete from ionic migration measurements. Cement
and Concrete Research, v.23, n. 3, p. 724-742, 1993.