Page 102 - Riem-Vol5_nº6

Basic HTML Version

832
IBRACON Structures and Materials Journal • 2012 • vol. 5 • nº 6
Design of compression reinforcement in reinforced concrete membrane
Thus, the forces in reinforcements are calculated
(89)
n
sx
=n
x
+n
xy
.tgθ
n
sx
=320+200.tg8,27°=329,07 kN/m
(90)
n
sy
=n
y
+n
xy
.cotgθ
n
sy
=-2000+200.cotg8,27°=-623,78 kN/m
Finally, the reinforcement areas are given by:
a
sx
= n
sx
f
yd
= 329,07 43,49 =7,57cm²
a
sy
= n
sy
σ
y
= n
sy
E.ε
y
= -623,78
21000.(-1,91‰) =15,52 cm²
8. Conclusions
Methods are presented herein to determine compression reinforcement
in design case II, III and IV provided by CEB [3]. The limits for this design
were also presented; in other words, cases in which it is possible to adopt
compression reinforcement so that compressive stress in concrete is re-
duced to its strength are delimited. In all the cases, these limits are only
related to the shear force to which the membrane is subjected.
Furthermore, a model for concrete strength was used that interpo-
lates the values
​​
of strength between f
cd1
and f
cd2
according to the
curve obtained by Vecchio and Collins [2], so that there is no discon-
tinuity of strength values between cases II and IV and cases III and
IV. Also, we presented how to evaluate whether the compressive
stress in the concrete is lower than the limit to this strength model.
Due to this model adopted for concrete, for cases II and III, the re-
inforcement design became more complex and iterative methods
were necessary for resolution. However, it leads to fewer amounts
of reinforcement than those found when using only the values
sug-
gested by CEB [3] for strength.
About case IV, it was found that there are infinite solutions for re-
inforcement design, although just one leads to the minimum rein-
Table 4 – Iterative calculation of
θ
i
o
θ
( )
i
(‰)
1
f
(MPa)
c2max
(Mpa)
c
o
θ
( )
f
1
1,000
2,072
11,856
95,512
8,164
2
8,164
2,154
11,714
11,856
8,266
3
8,266
2,156
11,710
11,714
8,269
4
8,269
2,156
11,710
11,710
8,269
5
8,269
2,156
11,710
11,710
8,269
6
8,269
2,156
11,710
11,710
8,269
forcement required. This occurs due to the smaller number of fixed
variables as compared to cases II and III. It is possible to find the
most economic solution design through the trial and error method.
9. References
[01] BAUMANN, T. Zur Frage der Netzbewehrung von
Flachentragwerken. Der Bauingenieur, Vol. 47, Nº 10,
1972, p.367-377
[02] VECCHIO, F. J.;COLLINS M. P. The Modified
compression-Field theory for reinforced concrete
elements subjected to shear. ACI Structural Journal.
March- April, 1986, p.219-231
[03] COMITÉ EURO-INTERNATIONAL DU BETÓN.
CEB-FIP model code 1990. London, Thomas Telford,
1993
[04] NIELSEN M. P., On the strenght of reinforced
concrete discs, ACTA Polytechnica Scandinacia,
Civil Engineering and Building Construction Series,
Nº 10, Copenhagen, 1971
[05] GUPTA, AJAYA K. Membrane reinforcement in shells.
Journal of the Structural Division,Proceedings of the
American Society of Civil Engineers, v.107, January,
1981. p. 41-56.
[06] VECCHIO, F. J.;COLLINS M. P. Response of
Reinforced Concrete to In-Plane Shear and Normal
Stresses. Publication Nº 82-03, Department of Civil
Engineering, University of Toronto, March, 1982,
332p.
[07] FIALKOW, M.N. Strength design of shell membrane
reinforcement. Journal of Structural Engineering,
v. 109, n. 4, 1983. p. 891-908.
[08] ACI COMITTEE 318. Building code requirements for
structural concrete. American Concrete Institute,
Detroit, 1977.
[09] GUPTA, AJAYA K; AKBAR H. Cracking in reinforced
concrete analysis. Journal of Structural Engineering,
v. 110, n. 8, 1984. p. 1735-1746.
[10] PETER, J. Zur Bewehrung von Scheiben und Schalen
für Hauptspannungen Schiefwinkling zur
Bewehrungsrichtung, Dissertation, T. H. Stutgart, 1964.
[11] CHEN, REINALDO. Dimensionamento de elementos
de superfície de concreto Armado: membranas,
placas e cascas. 2004. 148 p. Dissertação (Mestrado)
Escola Politécnica da Universidade de São Paulo,
São Paulo, 2004.
[12] JAZRA, F. M. Dimensionamento de chapas de
concreto armado. 2008. 126 p. Dissertação
(Mestrado) – Escola Politécnica da Universidade de
São Paulo, São Paulo, 2008.
[13] LEONHARDT, F.; MONNIG, E. Construções de
concreto v. 2: casos especiais de dimensionamento
de estruturas de concreto armado, Rio de Janeiro,
Interciências, 1978.
[14] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.
Norma Brasileira NBR-6118: Projeto de estruturas de
concreto. Rio de Janeiro, 2007.
[15] DELLA BELLA, J. C.; CIFÚ, S. Critérios para
dimensionamento das armaduras e verificação do