147
IBRACON Structures and Materials Journal • 2013 • vol. 6 • nº 1
V. S. ALMEIDA
|
H. L. SIMONETTI
|
L. OLIVEIRA NETO
[06] Liang, Q.Q; Uy, B.; Steven, G.P. Performance-Based
Optimization for Strut-Tie Modeling of Structural
Concrete. Journal of Structural Engineering,
pp. 815p–823, 2002.
[07] LIANG, Q.Q. Performance-based Optimization of
Structures: Theory and applications, Spon Press,
London, 2005.
[08] Reineck, Karl-Heinz. Shear and concrete tensile
strength in the design concept of strut-and-tie models,
Ibracon Structural Journal, vol 3, n.1,p. 1-18, 2007.
[09] Brugge, M. Generating strut-and-tie patterns for
reinforced concrete structures using topology
optimization. Computers and Structures,
87:1483-1495, 2009.
[10] Rozvany, G.I.N.; Bendoe, M.P.; Kirsch, U. Layout
optimization of structures, Applied Mechanics Review,
v. 48, p. 41-119, 1995.
[11] STUMP, F. V. Otimização Topológica Aplicada ao
Projeto de Estruturas Tradicionais e Estruturas com
Gradação Funcional sujeitas a Restrição de Tensão.
Dissertação (Mestrado) - Escola Politécnica da USP,
São Paulo, 2006.
[12] Bendsøe, M.P. Optimal Shape design as a material
distribution problem, Structural Optimization, v. 1,
pp. 193-202, 1989.
[13] Rozvany, G.I.N.; Zhou, M.; Birker, T. Generalized
shape optimization without homogenization, Structural
Optimization, v. 4, p. 250-252, 1992.
[14] LABANOWSKI, A. FANCELLO, E. A. e NOVOTNY,
A.A. SIMP, ESO e TSA: uma análise comparativa de
métodos de otimização topológica para elasticidade
2d; CILAMCE 2004; Recife; 10/11/2004; 12/11/2004;
Publicação: Proceedings of the XXV Iberian
Latin-American Congress on Computational Methods
in Engineering. CILAMCE 2004.
[15] SIMONETTI, H.L., ALMEIDA, V.S., NEVES, F.A Seleção
de Topologias Ótimas para Estruturas do Contínuo
com minimização de Volume sujeita a restrição de
tensão via “Smoothing ESO” (SESO); CILAMCE;
Argentina; 2010.
[16] Xie, Y.M., Steven, G.P. A simple evolutionary
procedure for structural optimization, Computers &
Structures, Vol. 49, n. 5, p. 885-896, 1993.
[17] Tanskanen P., The evolutionary structural optimization
method: theoretical aspects. Comput Methods Appl
Mech Eng 191:5485–5498, 2002
[18] QUERIN, O.M., Evolutionary Structural Optimization
stress based formulation and implementation. PhD
dissertation, University of Sydney,1997.
[19] Bergan, P.G. E Felippa, C.A. A triangular membrane
element with rotational degrees of freedom. Comp.
Meths. in Appl. Mech. Eng., v.50, p.25-69, 1985.
[20] SIMONETTI, H.L., ALMEIDA, V.S., NEVES, F.A , The
influence of geometry on the structural elements of
topology via SESO. CILAMCE; Armação de Búzios,
2009.
Figure 12 – Proposed disposition of beam
hole reinforcement (Schlaich et al., [1])
Table 3 – Verification of compression stresses acting on the strut (MN, MPa)
Strut
Forces (MN)
(MPa)
. 0.8 f = 20 (MPa)
cd
C
3
-3.3
-28
Strengthen
C
5
-1.4
-20
Ok
C
6
-1.7
-18.5
Ok
C
7
-5.5
-18.5
Ok
C
8
-2.6
-22
Strengthen