467
IBRACON Structures and Materials Journal • 2012 • vol. 5 • nº 4
D.V. RIBEIRO | J.A. LABRINCHA
|
M.R. MORELLI
[14] BAUER, E. Avaliação comparativa da influência da
adição de escória de alto-forno na corrosão das
armaduras através de técnicas eletroquímicas. 1995.
236p. Tese (Doutorado), Escola Politécnica,
Universidade de São Paulo, São Paulo, 1995
[15] MIRANDA, J.M; et al. Limitations and advantages of
electrochemical chloride removal in corroded
reinforced concrete structures. Cement and Concrete
Research, v. 37, n. 4, p. 596–603, 2007.
[16] SHI, C. Effect of mixing proportions of concrete on
its electrical conductivity and the rapid chloride
permeability test (ASTM C1202 or ASSHTO T277)
results. Cement and Concrete Research, v. 34, n. 3,
p. 537–545, 2004.
[17] POLDER, R.B. Test methods for on site measurement
of resistivity of concrete - a RILEM TC-154 technical
recommendation. Construction and Building Materials,
v. 15, n. 2-3, p. 125-131, 2001.
[18] WHITING, D.A.; NAGI, M.A. Electrical Resistivity of
Concrete − A Literature Review. Illinois, USA: Portland
Cement Association, 2003. 57p. (R&D Serial
No. 2457)
[19] BASHEER, P.A.M.; et al. Monitoring electrical
resistance of concretes containing alternative
cementitious materials to assess their resistance to
chloride penetration. Cement & Concrete Composites,
v. 24, n. 5, p. 437-449, 2002.
[20] MCCARTER, W.J.; STARRS, G.; CHRISP, T.M.
Electrical conductivity, diffusion, and permeability of
Portland cement-based mortars. Cement and
Concrete Research, v. 30, n. 9, p. 1395-1400, 2000.
[21] ANDRADE, C. Calculation of diffusion coefficients in
concrete from ionic migration measurements. Cement
and Concrete Research, v.23, n. 3, p. 724-742, 1993.